Single-cell

How to create pseudobulk from single-cell RNAseq data

What is pseduobulk? Many of you have heard about bulk-RNAseq data. What is pseduobulk? Single-cell RNAseq can profile the gene expression at single-cell resolution. For differential expression, psedobulk seems to perform really well(see paper muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data). To create a pseudobulk, one can artificially add up the counts for cells from the same cell type of the same sample. In this blog post, I’ll guide you through the art of creating pseudobulk data from scRNA-seq experiments.

Reuse the single cell data! How to create a seurat object from GEO datasets

Download the data https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116256 cd data/GSE116256 wget https://ftp.ncbi.nlm.nih.gov/geo/series/GSE116nnn/GSE116256/suppl/GSE116256_RAW.tar tar xvf GSE116256_RAW.tar rm GSE116256_RAW.tar Depending on how the authors upload their data. Some authors may just upload the merged count matrix file. This is the easiest situation. In this dataset, each sample has a separate set of matrix (*dem.txt.gz), features and barcodes. Total, there are 43 samples. For each sample, it has an associated metadata file (*anno.txt.gz) too. You can inspect the files in command line:

10 single-cell data benchmarking papers

I tweeted it at https://twitter.com/tangming2005/status/1679120948140572672 I got asked to put all my posts in a central place and I think it is a good idea. And here it is! Benchmarking integration of single-cell differential expression Benchmarking atlas-level data integration in single-cell genomics A review of computational strategies for denoising and imputation of single-cell transcriptomic data Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

How to add boxplots or density plots side-by-side a scatterplot: a single cell case study

introduce ggside using single cell data The ggside R package provides a new way to visualize data by combining the flexibility of ggplot2 with the power of side-by-side plots. We will use a single cell dataset to demonstrate its usage. ggside allows users to create side-by-side plots of multiple variables, such as gene expression, cell type, and experimental conditions. This can be helpful for identifying patterns and trends in scRNA-seq data that would be difficult to see in individual plots.

How to construct a spatial object in Seurat

Sign up for my newsletter to not miss a post like this https://divingintogeneticsandgenomics.ck.page/newsletter Single-cell spatial transcriptome data is a new and advanced technology that combines the study of individual cells’ genes and their location in a tissue to understand the complex cellular and molecular differences within it. This allows scientists to investigate how genes are expressed and how cells interact with each other with much greater detail than before.

How to do gene correlation for single-cell RNAseq data (part 2) using meta-cell

In my last blog post, I showed that pearson gene correlation for single-cell data has flaws because of the sparsity of the count matrix. One way to get around it is to use the so called meta-cell. One can use KNN to find the K nearest neighbors and collapse them into a meta-cell. You can implement it from scratch, but one should not re-invent the wheel. For example, you can use metacells.

Partial least square regression for marker gene identification in scRNAseq data

This is an extension of my last blog post marker gene selection using logistic regression and regularization for scRNAseq. Let’s use the same PBMC single-cell RNAseq data as an example. Load libraries library(Seurat) library(tidyverse) library(tidymodels) library(scCustomize) # for plotting library(patchwork) Preprocess the data

Load the PBMC dataset pbmc.data <- Read10X(data.dir = "~/blog_data/filtered_gene_bc_matrices/hg19/") # Initialize the Seurat object with the raw (non-normalized data). pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.

marker gene selection using logistic regression and regularization for scRNAseq

why this blog post? I saw a biorxiv paper titled A comparison of marker gene selection methods for single-cell RNA sequencing data Our results highlight the efficacy of simple methods, especially the Wilcoxon rank-sum test, Student’s t-test and logistic regression I am interested in using logistic regression to find marker genes and want to try fitting the model in the tidymodel ecosystem and using different regularization methods.

Matrix Factorization for single-cell RNAseq data

I am interested in learning more on matrix factorization and its application in scRNAseq data. I want to shout out to this paper: Enter the Matrix: Factorization Uncovers Knowledge from Omics by Elana J. Fertig group. A matrix is decomposed to two matrices: the amplitude matrix and the pattern matrix. You can then do all sorts of things with the decomposed matrices. Single cell matrix is no special, one can use the matrix factorization techniques to derive interesting biological insights.

clustering scATACseq data: the TF-IDF way

scATACseq data are very sparse. It is sparser than scRNAseq. To do clustering of scATACseq data, there are some preprocessing steps need to be done. I want to reproduce what has been done after reading the method section of these two recent scATACseq paper: A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility Darren et.al Cell 2018 Latent Semantic Indexing Cluster Analysis In order to get an initial sense of the relationship between individual cells, we first broke the genome into 5kb windows and then scored each cell for any insertions in these windows, generating a large, sparse, binary matrix of 5kb windows by cells for each tissue.