
Best Good Enough Practices
for Reproducible Computing

Tommy Tang

Divingintogeneticsandgenomics.com

Youtube: Chatomics

@tangming2005

2

Why reproducibility is important?

3

Why reproducibility is important?

Titus Brown

Method matters

Another example

• The Importance of Reproducible Research in High-Throughput
Biology.

• By Dr.Keith A. Baggerly from MD Anderson Cancer Center.

• Highly recommend, Keith is very fun.

https://www.youtube.com/watch?v=7gYIs7uYbMo

https://www.youtube.com/watch?v=7gYIs7uYbMo
https://www.youtube.com/watch?v=7gYIs7uYbMo
https://www.youtube.com/watch?v=7gYIs7uYbMo
https://www.youtube.com/watch?v=7gYIs7uYbMo
https://www.youtube.com/watch?v=7gYIs7uYbMo
https://www.youtube.com/watch?v=7gYIs7uYbMo

What’s wrong with this spreadsheet?

This is a must-read for data scientists and
wet-lab scientists

https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989

https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989

Why reproducibility is hard?

• Raw data are not available/data are not version controlled

• Scripts are not available or available upon reasonable request ☺

• Lack of method description.

• Versions of the tools are different. (e.g. R/python/bioinformatics
tools)

• Different operating systems (macOS vs Unix vs Windows).

If it is so hard, should you care?

• Your closest collaborator is you six months ago

• Keep this in mind: You are going to do the same/similar analysis in the future
yourself!

• Wrong decision-making for drug development can be expensive

6/28/2025 10

Naming files and project
organization

11

Naming files is hard

What are your file names look like?

http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf

http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf

Three principles for (file) names

• 1. Machine readable (do not put special characters and space in the
name)

• 2. Human readable (Easy to figure out what the heck something is,
based on its name, add slug)

• 3. Plays well with default ordering:

 * Put something numeric first

 * Use the ISO 8601 standard for dates (YYYY-MM-DD)

 * Left pad other numbers with zeros

Jenny Bryan

http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf

http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf

Write Dates as YYYY-MM-DD

Using the global “ISO 8601” standard, YYYY-MM-DD, such as 2013-02-27.

http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-
slides/naming-slides.pdf

Jenny Bryan

Jenny Bryan:
 https://rawgit.com/Reproducible-Science-Curriculum/rr-organization1/master/organization-01-slides.html

Project organization is important

You do not have to follow exactly this as long as you have a consistent folder structure for all your projects

Use R project in Rstudio with consistent folder
structure

Remember, always keep the data in the data folder untouched, I usually do
$ chmod u-w –R data/
To revoke the user’s write right so you can not edit or delete the files in the data folder.

Always generate the output/intermediate files/figures in the results folder using the scripts in the scripts folder

Use relative path or better use here() to construct file path

https://www.tidyverse.org/blog/2017/12/workflow-vs-script/

Use pyhere in Python

https://github.com/wildland-creative/pyhere

https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://github.com/wildland-creative/pyhere
https://github.com/wildland-creative/pyhere
https://github.com/wildland-creative/pyhere

Docker/singularity Container

• Why docker?

• Imagine you are working on an analysis in R and you send your code
to a friend. Your friend runs exactly this code on exactly the same
data set but gets a slightly different result. This can have various
reasons such as a different operating system, a different version of an
R package, etc. Docker is trying to solve problems like that.

• Think it as a virtual machine!

https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html

https://rocker-project.org

https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://cyverse-cybercarpentry-container-workshop-2018.readthedocs-hosted.com/en/latest/docker/dockerintro.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html
https://ropenscilabs.github.io/r-docker-tutorial/01-what-and-why.html

Literate programming and
automation

22

Literate programming: mix code with prose
Jupyter Notebook

Jupyter notebook is not git friendly

R notebook/markdown

You can run python chunk

with Reticulate

https://rstudio.github.io/reticulate/

Quarto for literate programming

• Quarto: the next generation of Rmarkdown

6/28/2025 25

https://quarto.org
.Rmd → .qmd

26

Documentation outside of the code

https://gitlab.com/tangming2005/Enhancer_promoter_interaction_data

Automation makes your research more reproducible
AND saves you time in the long run

Computers are good at repetitive work

Good Side effect of automation

• Write scripts for everything unless it is not possible. (manual editing,
document, document, document!)

• The best documentation is automation

Credit to someone in the twitter-verse ☺

Tips for automation
• If you have a repetitive simple task, put them into a shell script:

my_routine.sh.

• Good old GNU make

• More recent snakemake, nextflow, WDL etc.

https://github.com/pditommaso/awesome-pipeline

{targets}

https://books.ropensci.org/targets/

https://github.com/pditommaso/awesome-pipeline
https://github.com/pditommaso/awesome-pipeline
https://github.com/pditommaso/awesome-pipeline

30

Create an R/python package for even greater
reproducibility

• Roxygen2 in R for documenting functions

• Wrap multiple functions into an R package

https://r-pkgs.org

31

Reproducibility spectrum

• I can reproduce my own projects in my own computer in a month

• I can reproduce my own projects in 3 years

• I can reproduce my projects anywhere anytime

• Others can reproduce my projects

32

Good enough practices

• Have a consistent folder structure for organizing Bioinformatics projects

• Automate as much as possible (e.g.,pre-processing)

• Use notebook (Rmarkdown or Juypter notebook) combining code and
documentation

• Write functions to avoid repetition (use LLM)

• Version control code with git

• Use docker, conda, uv, renv to manage your computing environment

• Knitr to create HTML report

• Create a slide deck for each analysis. Put the github link at the end of the
slide

33

Further reading

https://raps-with-r.dev
Unit test

CI/CD

What questions do you have?

6/28/2025 34

Backup

6/28/2025 35

What makes large sequencing project
successful

Be cautious with Excel

Gene name errors: Lessons not learned

https://www.sciencedirect.com/science/article/pii/S0018506X18302599?via%3Dihub

https://github.com/jennybc/scary-excel-stories by Jenny Bryan

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008984

https://www.sciencedirect.com/science/article/pii/S0018506X18302599?via%3Dihub
https://github.com/jennybc/scary-excel-stories
https://github.com/jennybc/scary-excel-stories
https://github.com/jennybc/scary-excel-stories
https://github.com/jennybc/scary-excel-stories
https://github.com/jennybc/scary-excel-stories
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008984

TCGA barcode

Good idea to encode metadata to filenames?

https://twitter.com/tangming2005/status/1398094371594149893

This is a must-read for data scientists and
wet-lab scientists

https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989

https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989

Tidy data

Hadley Wickham, Tidy Data, Vol. 59, Issue 10, Sep 2014, Journal of
Statistical Software. http://www.jstatsoft.org/v59/i10.

https://www.jstatsoft.org/v59/i10

Tidy data

Make the data in a tidy format which is ggplot2 friendly!

Fill in empty values with tidyr

tidyr::fill(data, ..., .direction = c("down", "up", "downup", "updown"))

Use the right Null values

Use good field names

● Choose descriptive field names, but be careful not to include spaces, numbers, or
special characters of any kind. Spaces can be misinterpreted by parsers that use
whitespace as delimiters and some programs don’t like field names that are text
strings that start with numbers.

46read_tsv() %>% janitor::clean_names()

Be consistent

Use consistent codes for categorical variables. For a categorical variable like the sex of a mouse in a genetics study, use a
single common value for males (e.g., “male”), and a single common value for females (e.g., “female”). Do not sometimes
write “M,” sometimes “male,” and sometimes “Male.” Pick one and stick to it

Use consistent variable names. If in one file (e.g., the first batch of subjects), you have a variable called “Glucose_10wk,”
then call it exactly that in other files (e.g., for other batches of subjects). If it is variably called “Glucose_10wk,”
“gluc_10weeks,” and “10 week glucose,” then downstream the data analyst will have to work out that these are all
really the same thing.

Use consistent subject identifiers. If sometimes it is “153” and sometimes “mouse153” and sometimes “mouse-153F”
and sometimes “Mouse153,” there is going to be extra work to figure out who is who.

Common mistakes

• https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-
mistakes/

“There are a few potential errors to be on the lookout for in your own
data as well as data from collaborators or the Internet. If you are
aware of the errors and the possible negative effect on downstream
data analysis and result interpretation, it might motivate yourself and
your project members to try and avoid them. Making small changes
to the way you format your data in spreadsheets can have a great
impact on efficiency and reliability when it comes to data cleaning
and analysis”

https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/

49

Functional programming (do not repeat
yourself)

I am repeating myself

Git version control and
computing environment
management

50

51

Why use git

• Recover code

• Collaboration or Inheriting other people’s project

• Code review (we all make mistakes)

• Use branches (that can be throw away)

52

Git is hard?

• Six basic commands can take you a long way:
• Git init

• Git clone

• Git add

• Git commit

• Git push

• Git pull

• Commit often, push by the end of the day https://happygitwithr.com

https://learngitbranching.js.org

https://happygitwithr.com/
https://learngitbranching.js.org/

Computing environment management with
Conda/mamba

https://github.com/mamba-org/mamba

54

uv package management

https://github.com/astral-sh/uv

55

renv

• The R package renv helps you to set up and restore project specific
local environment

• Create a private R library with renv::int(). The project will now always
rely on the local library

• Update a library with renv::snapshot()

• Restore a library with renv::restore()

How to ensure reproducibility

• Versioning of the data

• Naming files and Project organization

• Versioning of code: Git version control

• Versioning of packages: uv, conda, renv

• Versioning of operating systems: Containers (docker, singularity, biocontainers
https://biocontainers.pro/)

• Use Jupyter/R Notebook, Quarto literal programming

• Clean code (functional programming)

Clean code with functional
programming and R packages

57

58

Better code with functional programming in R

http://adv-r.had.co.nz/Functional-programming.html

https://adv-r.hadley.nz/fp.html

http://adv-r.had.co.nz/Functional-programming.html
http://adv-r.had.co.nz/Functional-programming.html
http://adv-r.had.co.nz/Functional-programming.html
http://adv-r.had.co.nz/Functional-programming.html
http://adv-r.had.co.nz/Functional-programming.html
https://adv-r.hadley.nz/fp.html
https://adv-r.hadley.nz/fp.html
https://adv-r.hadley.nz/fp.html

59

Functional programming use purrr::map()

https://adv-r.hadley.nz/functionals.html

https://purrr.tidyverse.org

60

Functional programming (do not repeat
yourself)

61

Use ChatGPT to refactor your code

	Slide 1: Best Good Enough Practices for Reproducible Computing
	Slide 2: Why reproducibility is important?
	Slide 3: Why reproducibility is important?
	Slide 4
	Slide 5: Method matters
	Slide 6: Another example
	Slide 7: What’s wrong with this spreadsheet?
	Slide 8: This is a must-read for data scientists and wet-lab scientists
	Slide 9: Why reproducibility is hard?
	Slide 10: If it is so hard, should you care?
	Slide 11: Naming files and project organization
	Slide 12
	Slide 13: What are your file names look like?
	Slide 14: Three principles for (file) names
	Slide 15: Write Dates as YYYY-MM-DD
	Slide 16
	Slide 17
	Slide 18: Project organization is important
	Slide 19: Use R project in Rstudio with consistent folder structure
	Slide 20: Use relative path or better use here() to construct file path
	Slide 21: Docker/singularity Container
	Slide 22: Literate programming and automation
	Slide 23: Literate programming: mix code with prose Jupyter Notebook
	Slide 24: R notebook/markdown
	Slide 25: Quarto for literate programming
	Slide 26: Documentation outside of the code
	Slide 27: Automation makes your research more reproducible AND saves you time in the long run
	Slide 28: Good Side effect of automation
	Slide 29: Tips for automation
	Slide 30: Create an R/python package for even greater reproducibility
	Slide 31: Reproducibility spectrum
	Slide 32: Good enough practices
	Slide 33: Further reading
	Slide 34: What questions do you have?
	Slide 35: Backup
	Slide 36: What makes large sequencing project successful
	Slide 37: Be cautious with Excel
	Slide 38: Gene name errors: Lessons not learned
	Slide 39: TCGA barcode
	Slide 40: Good idea to encode metadata to filenames?
	Slide 41: This is a must-read for data scientists and wet-lab scientists
	Slide 42: Tidy data
	Slide 43: Tidy data
	Slide 44: Fill in empty values with tidyr
	Slide 45: Use the right Null values
	Slide 46: Use good field names
	Slide 47: Be consistent
	Slide 48: Common mistakes
	Slide 49: Functional programming (do not repeat yourself)
	Slide 50: Git version control and computing environment management
	Slide 51: Why use git
	Slide 52: Git is hard?
	Slide 53: Computing environment management with Conda/mamba
	Slide 54: uv package management
	Slide 55: renv
	Slide 56: How to ensure reproducibility
	Slide 57: Clean code with functional programming and R packages
	Slide 58: Better code with functional programming in R
	Slide 59: Functional programming use purrr::map()
	Slide 60: Functional programming (do not repeat yourself)
	Slide 61: Use ChatGPT to refactor your code

