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Let's watk sprint through a typical” scRNA-seq analysis
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Spend time for Quality control
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Specie

Technology and Specie
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Fig 1. Boxplots showing the differences in mtDNA% across species, technologies and tissues. Each dot represents a cell; the red line is the early
established 5% threshold, and the blue line is the 10% threshold for human cells proposed here. In parenthesis (panel C and D), the number of cells in the
stated tissue. (A) The difference in mtDNA% between human and mice cells. (B) The differences in mtDNA% between human and mice cells by the
technology used to generate the data. (C) Boxplots of mtDNA% across 44 human tissues. (D) Boxplots of mtDNA% across 121 mouse tissues.
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miQC: An adaptive probabilistic framework for quality
control of single-cell RNA-sequencing data

Abstract

Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in
tissues at high resolution. An important preprocessing step prior to performing downstream
analyses is to identify and remove cells with poor or degraded sample quality using quality
control (QC) metrics. Two widely used QC metrics to identify a ‘low-quality’ cell are (i) if the cell
includes a high proportion of reads that map to mitochondrial DNA (mtDNA) encoded genes
and (i) if a small number of genes are detected. Current best practices use these QC metrics
independently with either arbitrary, uniform thresholds (e.g. 5%) or biological context-dependent
(e.g. species) thresholds, and fail to jointly model these metrics in a data-driven manner.
Current practices are often overly stringent and especially untenable on certain types of tissues,
such as archived tumor tissues, or tissues associated with mitochondrial function, such as
kidney tissue [1]. We propose a data-driven QC metric (miQC) that jointly models both the
proportion of reads mapping to mtDNA genes and the number of detected genes with mixture
models in a probabilistic framework to predict the low-quality cells in a given dataset. We
demonstrate how our QC metric easily adapts to different types of single-cell datasets to
remove low-quality cells while preserving high-quality cells that can be used for downstream
analyses. Our software package is available at hiips://bioconductor.org/packages/miQC.




Doublet detection and ambient RNA

* DoubletFinder https://github.com/chris-mcginnis-ucsf/
* Scrublet - https://github.com/AllonKleinLab/scrublet
* DoubletCell in Scran::DoubletCell

 https://github.com/broadinstitute/CellBender
* https://github.com/constantAmateur/SoupX



https://github.com/broadinstitute/CellBender
https://github.com/constantAmateur/SoupX

Normalization and scaling

* Bulk-RNAseq

e Reads per kilobase of exon per million reads mapped (RPKM)
e Transcript per million (TPM)

* Single-cell RNAseq
* LogNormalize: log(n/library_size *10/6)
e scTransform

* Scaling:
 Shifts the expression of each gene, so that the mean expression across cells is 0
e Scales the expression of each gene, so that the variance across cells is 1

* This step gives equal weight in downstream analyses, so that highly-expressed genes
do not dominate
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Normalize to library size and log transform

More sophisticated methods: SCTransform in Seurat
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Comparison of transformations for single-cell RNA-seq data:
nature.com/articles/s4159... TLDR out of 22 approaches benchmarked, a
simple shifted log transform with a pseudocount is as as good or better
than the others: log(y/s+1)
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Dimension reduction (PCA vs UMAP)
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UMAP and TSNE

M, Lior Pachter @ @Ipachter - Aug 27, 2021 | personally think TSNE/UMAP is still useful
p It's time to stop making t-SNE & UMAP plots. In a new preprint w/ Tara T h | b | . f d
Chari we show that while they display some correlation with the underlying O have a4 g ODal view O you r data.

high-dimension data, they don't preserve local or global structure & are
misleading. They're also arbitrary.  biorxiv.org/content/10.110...

UMAP Dimension Reduction: Part

Cell Types &
» Mixed Mesoderm 1 - Maln Ideas
Blood
Neural Tube ® March 7, 2022
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Avoid batch and confounding effects: experimental design

Balanced study design

Luciano Martelotto

Completely confounded study design

The Problem of Confounding Biological Variation and Batch Effects

Biological Group
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TSNE 2
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http://bioconductor.org/books/3.14/0SCA.multisample/integrating-datasets.html#motivation



Data integration

e Batch effect or not? Correct or not
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Sacrificing biology by integration

6.4.2 Sacrificing biology by integration

Earlier in this chapter, we defined clusters from corrected values after applying fastMNN() to cells from
all samples in the chimera dataset. Alert readers may realize that this would result in the removal of
biological differences between our conditions. Any systematic difference in expression caused by
injection would be treated as a batch effect and lost when cells from different samples are aligned to the
same coordinate space. Now, one may not consider injection to be an interesting biological effect, but
the same reasoning applies for other conditions, e.g., integration of wild-type and knock-out samples

(Section 5) would result in the loss of any knock-out effect in the corrected values.

This loss is both expected and desirable. As we mentioned in Section 3, the main motivation for
performing batch correction is to enable us to characterize population heterogeneity in a consistent
manner across samples. This remains true in situations with multiple conditions where we would like one
set of clusters and annotations that can be used as common labels for the DE or DA analyses described
above. The alternative would be to cluster each condition separately and to attempt to identify matching
clusters across conditions - not straightforward for poorly separated clusters in contexts like

differentiation.

It may seem distressing to some that a (potentially very interesting) biological difference between
conditions is lost during correction. However, this concern is largely misplaced as the correction is only
ever used for defining common clusters and annotations. The DE analysis itself is performed on pseudo-
bulk samples created from the uncorrected counts, preserving the biological difference and ensuring that
it manifests in the list of DE genes for affected cell types. Of course, if the DE is strong enough, it may
result in a new condition-specific cluster that would be captured by a DA analysis as discussed in
Section 6.4.1.

New Results A Follow this preprint

PMD Uncovers Widespread Cell-State Erasure by scRNAseq Batch
Correction Methods

Scott R Tyler, Supinda Bunyavanich, Eric E Schadt
doi: https://doi.org/10.1101/2021.11.15.468733

This article is a preprint and has not been certified by peer review [what does this mean?].

[oo[|®o[|igo[|eto[|Q2[|Emo[[w127]

http://bioconductor.org/books/3.14/0SCA.multisample/differential-abundance.html#sacrificing-differences



Clustering

* Dimension reduction (PCA)
* k-means, hierarchical clustering etc

 Cluster cells (on the reduced
dimensions) using graph-based
method in Seurat v3 (Stuart et al,
Cell 2019). KNN graph + community
detection algorithm

* Can visualize using t-SNE / UMAP
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Evaluating cluster stability
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Tang et al 2021 Bioinformatics
http://bioconductor.org/books/3.14/0OSCA.advanced/clustering-redux.html#cluster-bootstrapping
https://github.com/crazyhottommy/scclusteval

https://divingintogeneticsandgenomics.com/post/scrnaseq-clustering-significant-test-an-unsolvable-problem/. scSHC
https://divingintogeneticsandgenomics.com/post/fine-tune-the-best-clustering-resolution-for-scrnaseq-data-trying-out-callback/



http://bioconductor.org/books/3.14/OSCA.advanced/clustering-redux.html
https://github.com/crazyhottommy/scclusteval
https://divingintogeneticsandgenomics.com/post/scrnaseq-clustering-significant-test-an-unsolvable-problem/
https://divingintogeneticsandgenomics.com/post/fine-tune-the-best-clustering-resolution-for-scrnaseq-data-trying-out-callback/

Marker gene p-value is inflated

4 Lucy L. Gao
M @lucylgao

"Double-dipping" - generating a hypothesis based on Step 1: Sample 100 observations
your data, and then testing the hypothesis on that AXA
same data - is dangerous. To see this, let's take data 1
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[ All three p-values < 0.000001!! @ J

1:39 PM - Aug 29, 2020 - Twitter Web App

https://www.lucylgao.com/clusterpval/
https://www.youtube.com/watch?v=voseWZlaFm4

https://www.sciencedirect.com/science/article/pii/S2405471219302698



Large number of data points will make p-value tiny

Ming "Tommy" Tang
@tangming2005

Reminder: You will get small p-values when your the Ming "Tommy" Tang @tangming2005 - Sep 28, 2020
number of data points is large @

G Daniel Martinez @dan_martimarti - Feb 4 tiny p-value when you have a lot of data points.

This effect size...
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https://twitter.com/tangming2005/status/1489964367336648707
https://mobile.twitter.com/mikhaeldito313/status/1505204061506715649

Question: if you have tens of thousands of data points with a correlation of
0.2 and a p-value 10*-11. Is it meaningful to show that? you always get a

. Mikhael Dito Manurung & @mikhaeldito313 - Mar 19

2/T-test. It can give you Cohen's D, which is the number of standard
deviations that separate the means of two groups. This accounts for the
magnitude of difference in expression, which gives additional information

over Wilcoxon's AUC.

(Image source: tinyurl.com/y8fqlkkx)
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Cell annotation

Ming "Tommy" Tang
@tangming2005

"The forever daunting question of cell annotation." --- S ngIeR
@NieuwenhuisTim . yeah, you got it right :) #scRNAseq
11:54 AM - Feb 17, 2022 - Twitter Web App Seurat V4 reference based mapping
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https://twitter.com/tangming2005/status/1494354585602998274 https://bioconductor.org/books/3.14/SingleRBook/



Differential cell abundance analysis

##
## 5 6 7 8 9 10
it Allantois 978158139 W127831 88259
## Blood progenitors 1 6 3 16 6 8 17
D ) ## Blood progenitors 2 31 8 28 21 43 114
® R-responder; B NR-non-responder
100+ ##  Cardiomyocytes 85 21 79 31 174 211
##  Caudal Mesoderm 10 106 9 3 10 29
75 ##  Caudal epiblast 2 2 0 0 22 45
9
9
4 501 6.2 Performing the DA analysis
Q)
2\, Our DA analysis will again be performed with the edgeR package. This allows us to take advantage of
254 the NB GLM methods to model overdispersed count data in the presence of limited replication - except
that the counts are not of reads per gene, but of cells per label (Lun, Richard, and Marioni 2017). The aim
is to share information across labels to improve our estimates of the biological variability in cell
0- abundance between replicates.
All samples 6.7x10° n.s 0.001 n.s n.s n.s library(edgeR)
Ag presentation’|  1x10% n.s 6.6x10° 0.01 0.02 n.s # Attaching some column metadata.

extra.info <- colData(merged) [match(colnames(abundances), merged$sample),]
y.ab <- DGEList(abundances, samples=extra.info)

y.ab

http://bioconductor.org/books/3.14/0SCA.multisample/differential-abundance.html#overview



Multi-sample Differential expression: pseudo-

bulk for the win

ARTICLE W) Check for updates

Confronting false discoveries in single-cell
differential expression

Jordan W. Squair 123 Matthieu Gautier® 2, Claudia Kathe 1'2, Mark A. Anderson1'2, Nicholas D. James1'2,

Thomas H. Hutson® "2, Rémi Hudelle1'2, Taha Qaiser® 3, Kaya J. E. Matson?, Quentin Barraud 1'2,
Ariel J. Levine® 4, Gioele La Manno!, Michael A. Skinnider® 126 & Grégoire Courtine 12,684
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Muscat::pbDS() or Scran::pseudoBulkDEG
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Differential expression (DE) vs Differential abundance (DA)

14.6.1 DE or DA? Two sides of the same coin

While useful, the distinction between DA and DE analyses is inherently artificial for scRNA-seq data. This
is because the labels used in the former are defined based on the genes to be tested in the latter. To
illustrate, consider a scRNA-seq experiment involving two biological conditions with several shared cell

types. We focus on a cell type X that is present in both conditions but contains some DEGs between

conditions. This leads to two possible outcomes:

1. The DE between conditions causes X to form two separate clusters (say, X; and X5) in expression
space. This manifests as DA where X is enriched in one condition and X is enriched in the other
condition.

2. The DE between conditions is not sufficient to split X into two separate clusters, e.g., because the
data integration procedure identifies them as corresponding cell types and merges them together.
This means that the differences between conditions manifest as DE within the single cluster
corresponding to X.

We have described the example above in terms of clustering, but the same arguments apply for any
labelling strategy based on the expression profiles, e.g., automated cell type assignment (Chapter 12).
Moreover, the choice between outcomes 1 and 2 is made implicitly by the combined effect of the data
merging, clustering and label assignment procedures. For example, differences between conditions are

more likely to manifest as DE for coarser clusters and as DA for finer clusters, but this is difficult to
predict reliably.

httos://www.biorxiv.ore/content/10.1101/2022.03.15.484475v1



Be aware of technical artifacts

Walter Muskovic
@WalterMuskovic

Replying to @tangming2005

MALAT1 and NEATT1 are restricted to the nucleus. We
found scRNA-seq clusters enriched for them can
represent damaged cells in which transcripts are being
lost from the cytoplasm while the nucleus remains
intact
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https://twitter.com/tangming2005/status/1507520784792793090
https://kb.10xgenomics.com/hc/en-us/articles/360004729092-Why-do-I-see-high-levels-of-Malat1-in-my-gene-expression-data-
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Dissociation methods can induce artificial
gene signatures
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CD4 is not expressed at high mRNA level in CD4+ cells

Ming "Tommy" Tang
@tangming2005

1/ a question on CD4 mRNA vs protein. @CaleblLareau
| saw "CD4+ T cells express low levels of the CD4
transcript but very high levels of CD4 protein

(Stoeckius et al., 2017)" in your paper
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Charting the tumor antigen maps drawn by single-cell genomics
The specificity of antibodies makes cancer immunotherapies, including chimeric
antigen receptor T cells and antibody-drug conjugates, possible. In parallel, ...
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CD56/NCAM1 is not expressed at high mRNA level in NK

cells

Ergiin Tiryaki @ErgnTiryaki - Mar 10

Replying to @tangming2005

@tomsgoms | think the same situation also applies to NCAM1 (CD56)
mRNA in NK cells. Although Smart-seq2 captures more NCAM1 than 10X, it
is still very low and zero for most of the NK cells.

Fig 6B shows the NCAM1 mRNA and CD56 in NK cluster

+—\ “== nature.com
Single-cell RNA-seq denoising using a deep count ...
Nature Communications - Single-cell RNA

sequencing is a powerful method to study gene ...
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Ming "Tommy" Tang @tangming2005 - Mar 10
Yes! Had the same experience with CD56 myself.
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Gazillions of point, data can be misleading
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https://github.com/exaexa/scattermore
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Understanding the details of methods

Seurat VinPlot

Expression Level

Identity

https://github.com/satijalab/seurat/issues/3322
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Actually, we add a small noise into data before VInPlot.
seurat/R/visualization.R
Lines 6733 to 6738 in 72a0c7b
6733 noise <- rnorm(n = length(x = datal, featurel)) / 100000
6734 }
6735 if (all(datal, feature] == data[, feature]l[1])) {
6736 warning(paste@("All cells have the same value of ", feature,
6737 } else{

6738 datal, feature]l <- datal, feature] + noise
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Discrepancy of log2Fold change for marker
genes between scanpy and Seurat

a
Scanpy vs. Seurat DE log fold change per cluster
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https://divingintogeneticsandgenomics.com/post/do-you-really-understand-log2fold-change-in-single-cell-rnaseqg-data/



Let's watk sprint through a typical” scRNA-seq analysis

. Fik, | 29 ~
cells . e o gs'f%‘ . .
—_— MI Wott| S P | Lib size etc.
=== k. | data correction

SCTransform in Seurat

E == quality control (e.g. batch) '

count matrices -
normalization

raw data
processing

N o
e —

Dimension Reduction:
feature

selection PCA
L BsCy 'lofs o TSN E
e % A%z;: U MAP
gene dynamlcs & marker D

metastable states . aime identification "’

¥

trajectory U
Congition 1 Cendition 2 inference o
# > <
: =)
: Q =
clustering === (N
| < ~+
compositional -2 (D
analysis & cluster o
g annotation 3
W/
. . logFC
Credit to Peter H ICkey differential expression

Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, (2019).
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Other resources

Orchestrating Single-Cell Analysis with

Bioconductor

Authors: Robert Amezquita [aut], Aaron Lun [aut, cre], Stephanie Hicks [aut], Raphael Gottardo [aut]

Version: 1.4.1

Modified: 2022-01-06

Compiled: 2022-01-07

Environment: R version 4.1.2 (2021-11-01), Bioconductor 3.14
License: CC BY 4.0

Copyright: Bioconductor, 2020

Source: https://github.com/LTLA/OSCA

Welcome

This is the landing page for the “Orchestrating Single-Cell Analysis
with Bioconductor” book, which teaches users some common
workflows for the analysis of single-cell RNA-seq data (scRNA-seq). This
book will show you how to make use of cutting-edge Bioconductor tools
to process, analyze, visualize, and explore scRNA-seq data. Additionally,

it serves as an online companion for the paper of the same name.

What you will learn

Bioconductor
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nature methods
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Review Article | Published: 21 June 2021

The triumphs and limitations of computational
methods for scRNA-seq

Peter V. Kharchenko

Nature Methods 18, 723-732 (2021) | Cite this article
18k Accesses | 4 Citations | 240 Altmetric | Metrics

https://github.com/seandavi/awesome-single-cell

https://github.com/mdozmorov/scRNA-seq notes

https://github.com/crazyhottommy/scRNAseq-analysis-notes

https://liulab-dfci.github.io/bioinfo-combio/scatac.html

https://bioconductor.org/books/release/OSCA/
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