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Avoid batch and confounding effects: experimental design

The Problem of Confounding Biological Variation and Batch Effects
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http://bioconductor.org/books/3.14/0SCA.multisample/integrating-datasets.html#fmotivation
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Data integration
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Sacrificing biology by integration

6.4.2 Sacrificing biology by integration

Earlier in this chapter, we defined clusters from corrected values after applying fastMNN() to cells from
all samples in the chimera dataset. Alert readers may realize that this would result in the removal of
biological differences between our conditions. Any systematic difference in expression caused by
injection would be treated as a batch effect and lost when cells from different samples are aligned to the
same coordinate space. Now, one may not consider injection to be an interesting biological effect, but
the same reasoning applies for other conditions, e.g., integration of wild-type and knock-out samples

(Section 5) would result in the loss of any knock-out effect in the corrected values.

This loss is both expected and desirable. As we mentioned in Section 3, the main motivation for
performing batch correction is to enable us to characterize population heterogeneity in a consistent
manner across samples. This remains true in situations with multiple conditions where we would like one
set of clusters and annotations that can be used as common labels for the DE or DA analyses described
above. The alternative would be to cluster each condition separately and to attempt to identify matching
clusters across conditions - not straightforward for poorly separated clusters in contexts like

differentiation.

It may seem distressing to some that a (potentially very interesting) biological difference between
conditions is lost during correction. However, this concern is largely misplaced as the correction is only
ever used for defining common clusters and annotations. The DE analysis itself is performed on pseudo-
bulk samples created from the uncorrected counts, preserving the biological difference and ensuring that
it manifests in the list of DE genes for affected cell types. Of course, if the DE is strong enough, it may
result in a new condition-specific cluster that would be captured by a DA analysis as discussed in
Section 6.4.1.

New Results A Follow this preprint

PMD Uncovers Widespread Cell-State Erasure by scRNAseq Batch
Correction Methods

Scott R Tyler; Supinda Bunyavanich, Eric E Schadt
doi: https://doi.org/10.1101/2021.11.15.468733

This article is a preprint and has not been certified by peer review [what does this mean?].

ERERNERENIERIEREE]
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Differential cell abundance (DA) analysis
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Our DA analysis will again be performed with the edgeR package. This allows us to take advantage of
the NB GLM methods to model overdispersed count data in the presence of limited replication - except

that the counts are not of reads per gene, but of cells per label (Lun, Richard, and Marioni 2017). The aim

is to share information across labels to improve our estimates of the biological variability in cell

All samples 6.7x10° n.s 0.001 n.s n.s n.s

abundance between replicates.

Ag presentation’| 1x10° n.s 6.6x10° 0.01 0.02 n.s

library(edgeR)

# Attaching some column metadata.

extra.info <- colData(merged) [match(colnames(abundances), merged$sample),]
y.ab <- DGEList(abundances, samples=extra.info)

y.ab

http://bioconductor.org/books/3.14/0SCA.multisample/differential-abundance.html#overview



Multi-sample Differential expression:
pseudo-bulk for the win
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Differential expression (DE) vs Differential abundance (DA)

14.6.1 DE or DA? Two sides of the same coin

While useful, the distinction between DA and DE analyses is inherently artificial for scRNA-seq data. This
is because the labels used in the former are defined based on the genes to be tested in the latter. To
illustrate, consider a scRNA-seq experiment involving two biological conditions with several shared cell
types. We focus on a cell type X that is present in both conditions but contains some DEGs between

conditions. This leads to two possible outcomes:

1. The DE between conditions causes X to form two separate clusters (say, X7 and X3) in expression
space. This manifests as DA where X is enriched in one condition and X3 is enriched in the other
condition.

2. The DE between conditions is not sufficient to split X into two separate clusters, e.g., because the
data integration procedure identifies them as corresponding cell types and merges them together.
This means that the differences between conditions manifest as DE within the single cluster

corresponding to X.

We have described the example above in terms of clustering, but the same arguments apply for any
labelling strategy based on the expression profiles, e.g., automated cell type assignment (Chapter 12).
Moreover, the choice between outcomes 1 and 2 is made implicitly by the combined effect of the data
merging, clustering and label assignment procedures. For example, differences between conditions are
more likely to manifest as DE for coarser clusters and as DA for finer clusters, but this is difficult to

predict reliably.

https://www.biorxiv.org/content/10.1101/2022.03.15.484475v1



Linear embedding integration using Mutual Nearest Neighbors (MNN)

fastMNN()
https://www.bioconductor.org/packages/release/bioc/vignettes/batchelor/inst/doc/correction.html
Seurat: CCA (canonical correlation analysis) + MNN



Harmony for batch correction

nature methods
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Fast, sensitive and accurate integration of single-cell
datawith Harmony
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Fig. 1| Overview of Harmony algorithm. PCA embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in this reduced
space and runs an iterative algorithm to adjust for dataset specific effects. a, Harmony uses fuzzy clustering to assign each cell to multiple clusters, while

a penalty term ensures that the diversity of datasets within each cluster is maximized. b, Harmony calculates a global centroid for each cluster, as well

as dataset-specific centroids for each cluster. €, Within each cluster, Harmony calculates a correction factor for each dataset based on the centroids.

d, Finally, Harmony corrects each cell with a cell-specific factor: a linear combination of dataset correction factors weighted by the cell’s soft cluster
assignments made in step a. Harmony repeats steps a to d until convergence. The dependence between cluster assignment and dataset diminishes with
each round. Datasets are represented with colors, cell types with different shapes.

Harmony only corrects the PCA coordinates, it does not give
you the batch corrected values like Seurat CCA based method



INMF in Liger

Iterative single-cell multi-omic integration using
online learning

Chao Gao @1, Jialin Liu’, April R. Kriebel, Sebastian Preiss| ©2, Chongyuan Luo®**7, Rosa Castanon?,
Justin Sandoval®, Angeline Rivkin3, Joseph R. Nery ©3, Margarita M. Behrens®, Joseph R. Ecker ©34,
Bing Ren? and Joshua D. Welch ®"62<

Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scal-
able computational approaches. Here we describe online integrative non-negative matrix factorization (iNMF), an algorithm
for integrating large, diverse and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of
cells using fixed memory, iteratively incorporates new datasets as they are generated and allows many users to simultaneously
analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new
data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacri-
fice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating
more than 1million cells on a standard laptop, integrating large single-cell RNA sequencing and spatial transcriptomic datasets,
and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex.

https://www.nature.com/articles/s41587-021-00867-x

on a dataset of 1.3
million cells from the
mouse embryo, online
iINMF finishes
dimension reduction in
25min using 1.9 GB of
RAM on a laptop,
whereas Harmony
requires 98min and 109
GB of RAM on a large-
memory server
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Fig. 1| Overview of the online iINMF algorithm. a, Schematic of INMF: the input single-cell datasets are jointly decomposed into shared (W) and
dataset-specific (V) metagenes and corresponding ‘metagene expression levels' or cell factor loadings (H). These metagenes and cell factor loadings
provide a quantitative definition of cell identity and how it varies across biological settings. b-d, Three different scenarios in which online learning can

be used for single-cell data integration. b, Scenario 1: the single-cell datasets are large but fully observed. Online iNMF processes the data in random
mini-batches, enabling memory usage independent of dataset size. Each cell may be used multiple times in different epochs of training to update the
metagenes. ¢, Scenario 2: the datasets arrive sequentially, and online INMF processes the datasets as they arrive, using each cell to update the metagenes
exactly once. d, Scenario 3: online INMF is performed as in Scenario 1or Scenario 2 to learn W and V.. Then cell factor loadings for the newly arriving
dataset are calculated using the shared metagenes (W) learned from previously processed datasets. The new dataset is not used to update the metagenes.

https://github.com/welch-lab/liger



Variational autoencoder (VAE) based integration method

Probabilistic models for nature methods
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scvi-tools accelerates data analysis and model development, powered by
PyTorch and AnnData.
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Article | Open access | Published: 09 October 2023

Population-level integration of single-cell datasets
enables multi-scale analysis across samples
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Fig. 1: scPoli enables learning cell-level and sample-level representations.
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Benchmarking of single-cell data integration

nature methods
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Benchmarking atlas-level data integration in single-cell
genomics

Malte D. Luecken, M. Biittner, K. Chaichoompu, A. Danese, M. Interlandi, M. F. Mueller, D. C. Strobl, L.
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Abstract

Single-cell atlases often include samples that span locations, laboratories and conditions,
leading to complex, nested batch effects in data. Thus, joint analysis of atlas datasets requires
reliable data integration. To guide integration method choice, we benchmarked 68 method
and preprocessing combinations on 85 batches of gene expression, chromatin accessibility
and simulation data from 23 publications, altogether representing >1.2 million cells
distributed in 13 atlas-level integration tasks. We evaluated methods according to scalability,
usability and their ability to remove batch effects while retaining biological variation using 14
evaluation metrics. We show that highly variable gene selection improves the performance of
data integration methods, whereas scaling pushes methods to prioritize batch removal over
conservation of biological variation. Overall, scANVI, Scanorama, scVl and scGen perform
well, particularly on complex integration tasks, while single-cell ATAC-sequencing integration
performance is strongly affected by choice of feature space. Our freely available Python
module and benchmarking pipeline can identify optimal data integration methods for new

data, benchmark new methods and improve method development.



Benchmarking of single-cell data integration
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Challenges
Lacking of gold-standard dataset.
Batch correction and preservation of biological difference.
Time and memory consumption
Choose a good method for future use on your own data (Harmony,

INMF, fastMNN, scVI, scPoli, SCALEX). Different methods may
outperform for different datasets



