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¢ | am a computational biologist working on (single-cell) genomics, epigenomics and transcriptomics.

¢ | use R primary for data wrangling and visualization in the tidyverse ecosystem;

¢ | use python for writing Snakemake workflows and reformatting data;

¢ | am a unix geek learning shell tricks almost every month; | care about reproducible research and open science.
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10x single-cell gene expression solution

Pool C )
Remove Oil

Collect

10x Barcoded Cells Qil

Gel Beads Enzyme /Q_
®e

LN o N
"\\ N /
\ h 20
Single Cell 10x Barcoded 10x Barcoded
GEMs cDNA cDNA

Transcriptional profiling of individual cells



10x single-cell gene expression solution
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Different scRNA-seq Techniques
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Plate or array (10X Genomics; BioRad) e ae

(ICELLS, Fluidigm C1)

split-pool
Takara Bio SMART-seq (sciATAC-seq)

SPLiT-seq
https://www.youtube.com/watch?v=WgaeZe7mKUc

Chen et al, Genome Biol 2019 STAT115



Exponential increase in throughput and new smart tech
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Let's watk sprint through a typical” scRNA-seq analysis
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https://www.embopress.org/lookup/doi/10.15252/msb.20188746

Read Alighment and gene quantification

 Cell Ranger (10X Genomics) solution: cellranger count

* RNA-seq: STAR
* STARsolo (Blibaum et al, F1000 2019): 10X faster than CellRanger

* Alignment free:
e Salmon Alevin
e Kallisto bustool

* Resolve cell barcode and correct barcode sequencing errors
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https://www.nature.com/articles/s41596-018-0073-y

Sparse: many 0s in the matrix



Os: biological or not biological

Gene 1 Gene 2 Gene 3 Gene 5 Gene 6

I Genome BIOIOgy . a Inside the biological system b Gene 4
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Statistics or biology: the zero-inflation controversy p——
P MRNA existing
about scRNA-seq data o inthe cell
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Ruochen Jiang, Tianyi Sun, Dongyuan Song & Jingyi Jessica Li
Library preparation " (few) (many)
Genome Biology 23, Article number: 31 (2022) | Cite this article tr:‘rl;r;?ptase cDNA
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Table 2 Clarification of zero-related terminology (few) (many)

In the current scRNA-seq literature, much ambiguity exists in the use of terms including “dropouts’, “excess +
zeros”, and “zero inflation” to describe the prevalence of zeros in scRNA-seq data [94]. We clarify the three terms
by summarizing their various uses in the scRNA-seq field to facilitate our discussion. Polymerase \ PCR/IVT
PCRor IVT ampli i
plification

( = ¢ i X X X X v v

Dropout or dropouts are widely used regarding the prevalence of zeros in scRNA-seq data. It was first
introduced in the SCDE method paper: “dropout describes zero gene expression for the genes that show =
moderate or high expressions in only a proportion of cells [38]". Hence, dropouts, as a data-driven concept, are |
not equivalent to either biological or non-biological zeros. Nevertheless, the use of “dropouts” in later papers
became inconsistent and confusing: most papers meant non-biological zeros [20, 36, 40, 52, 55, 95, 96]; some
meant non-biological zeros and low expression measurements [45, 97]; some meant all zeros [46, 47, 98]. In
addition, “dropout” was often used as an adjective to mean the existence of many zeros [99]. Such inconsistent
uses of “dropouts” are emphasized in a recent work [94]. To avoid possible confusion, we will not use “dropout”
or “"dropouts” in the following text.

Forward and
reverse primers

(few) (many)

Sequencing

"Z"0 0 0 0 0 >0

Biological Biological Technical Sampling Sampling
zero zero zero zero zero

Excess zeros are used in various ways: some papers referred to the larger proportion of zeros in scRNA-seq
data than in bulk RNA-seq data [40]; some meant non-biological zeros [45, 96]; some meant the additional zeros
that cannot be explained by the negative binomial (NB) model [97]. To avoid confusion, we will not use “excess

zeros” in the following text.
non-zero

Zero inflation, unlike the first two terms, is a statistical concept that depends on a specified model, i.e., a count
distribution such as the Poisson distribution and the NB distribution [95]. It means the proportion of zeros that
exceeds what is expected under the specified model [40]. We will use “zero inflation” in the following discussion
because its definition has no ambiguity.

Referecence genome
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Droplet scRNA-seq is not zero-inflated

Svensson et al 2

svensson et al

1.00 1

0.75 1

zeros_observed
o
(€]
o

D 0.25 1

0.00 1

2 0 2

log10(gene_means) 2 0 2

log10(gene_means)
n+x—1
n—1

fleimp) =Prx =a) = (" T2 TN 0 -p

This represents the number of failures which occur in a sequence of

Bernoulli trials before a target number of successes (n) is reached. The Svensson et al 2020

mean is 4 = n(1-p)/p and variance n(1-p)/p”2.

https://divingintogeneticsandgenomics.rbind.io/post/negative-bionomial-distribution-in-single-cell-rnaseq/



Denolsing vs imputation
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Florian Wagner @flo_compbio - Nov 2, 2020

Replying to @tangming2005 @fooliu and 2 others

The term "imputation" typically implies that there are "holes" in the matrix,
i.e. missing data (zeros?). That's not what is happening. Rather, *all*
measurements are associated with (different levels of) technical noise.
Happy to elaborate, favorite ref:

b

4 nature.com

- Validation of noise models for single-cell transcript...
Nature Methods - Noise models based on the
identification of major sources of technical ...

n 4 QO 15 0

Florian Wagner @flo_compbio - Nov 2, 2020

From a technical perspective, measurements of O aren't any more special
than measurements of 1 or 2 UMIs. Of course, if a gene is truly not
expressed, then we should always measure 0. But if a gene is expressed,we
could still fail to detect any of its transcripts in a given cell.

S| 01 Q 4 &

Florian Wagner @flo_compbio - Nov 2, 2020

I think imputing (I prefer the term "denoising") makes a lot of sense if you
want to visualize the data as a heatmap, but since it's often not totally clear
how accurate denoising methods are, | would always double-check by
plotting the raw data as well.

O 1 i QO 4 O



To Impute or not

Research | Open Access | Published: 27 August 2020

A systematic evaluation of single-cell RNA-sequencing
imputation methods

Wenpin Hou, Zhicheng Ji, Hongkai Ji &J & Stephanie C. Hicks

Genome Biology 21, Article number: 218 (2020) | Cite this article

15k Accesses | 40 Citations | 100 Altmetric | Metrics
Conclusions

We found that the majority of sScRNA-seq imputation methods outperformed no imputation in
recovering gene expression observed in bulk RNA-seq. However, the majority of the methods
did not improve performance in downstream analyses compared to no imputation, in
particular for clustering and trajectory analysis, and thus should be used with caution. In
addition, we found substantial variability in the performance of the methods within each
evaluation aspect. Overall, MAGIC, kNN-smoothing, and SAVER were found to outperform
the other methods most consistently.
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Mitochondrial gene content cutoftf
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Fig 1. Boxplots showing the differences in mtDNA% across species, technologies and tissues. Each dot represents a cell; the red line is the early
established 5% threshold, and the blue line is the 10% threshold for human cells proposed here. In parenthesis (panel C and D), the number of cells in the
stated tissue. (A) The difference in mtDNA% between human and mice cells. (B) The differences in mtDNA% between human and mice cells by the
technology used to generate the data. (C) Boxplots of mtDNA% across 44 human tissues. (D) Boxplots of mtDNA% across 121 mouse tissues.

Osorio et al 2020 Bioinformatics
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miQC: An adaptive probabilistic framework for quality
control of single-cell RNA-sequencing data

Abstract

Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in
tissues at high resolution. An important preprocessing step prior to performing downstream
analyses is to identify and remove cells with poor or degraded sample quality using quality
control (QC) metrics. Two widely used QC metrics to identify a ‘low-quality’ cell are (i) if the cell
includes a high proportion of reads that map to mitochondrial DNA (mtDNA) encoded genes
and (i) if a small number of genes are detected. Current best practices use these QC metrics
independently with either arbitrary, uniform thresholds (e.g. 5%) or biological context-dependent
(e.g. species) thresholds, and fail to jointly model these metrics in a data-driven manner.
Current practices are often overly stringent and especially untenable on certain types of tissues,
such as archived tumor tissues, or tissues associated with mitochondrial function, such as
kidney tissue [1]. We propose a data-driven QC metric (miQC) that jointly models both the
proportion of reads mapping to mtDNA genes and the number of detected genes with mixture
models in a probabilistic framework to predict the low-quality cells in a given dataset. We
demonstrate how our QC metric easily adapts to different types of single-cell datasets to
remove low-quality cells while preserving high-quality cells that can be used for downstream
analyses. Our software package is available at hiips://bioconductor.org/packages/miQC.




Normalization and scaling

* Bulk-RNAseq

e Reads per kilobase of exon per million reads mapped (RPKM)
e Transcript per million (TPM)

* Single-cell RNAseq
* LogNormalize: log(n/library_size *10/6)
e scTransform

* Scaling:
 Shifts the expression of each gene, so that the mean expression across cells is 0
e Scales the expression of each gene, so that the variance across cells is 1

* This step gives equal weight in downstream analyses, so that highly-expressed genes
do not dominate



How to calculate gene-gene correlation

- " Ming "Tommy" Tang
@tangming2005
1/ single-cell RNAseq data matrix is sparse. dominant
Os makes gene-gene correlation calculation hard.

Tools that | know to tackle this problem #scRNAseq :
bioconductor.org/packages/relea...
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Evaluating measures of association for single-cell
transcriptomics

Michael A. Skinnider &, Jordan W. Squair & Leonard J. Foster

Nature Methods 16, 381-386 (2019) | Cite this article

11k Accesses | 40 Citations | 57 Altmetric | Metrics

Abstract

Single-cell transcriptomics provides an opportunity to characterize cell-type-specific
transcriptional networks, intercellular signaling pathways and cellular diversity with
unprecedented resolution by profiling thousands of cells in a single experiment. However,
owing to the unique statistical properties of sScRNA-seq data, the optimal measures of
association for identifying gene-gene and cell-cell relationships from single-cell
transcriptomics remain unclear. Here, we conducted a large-scale evaluation of 17 measures
of association for their ability to reconstruct cellular networks, cluster cells of the same type
and link cell-type-specific transcriptional programs to disease. Measures of proportionality
were consistently among the best-performing methods across datasets and tasks. Our
analysis provides data-driven guidance for gene and cell network analysis in single-cell

transcriptomics.



Research | Open Access | Published: 14 December 2021

Benchmarking UMI-based single-cell RNA-seq
preprocessing workflows

Yue You &, Luyi Tian, Shian Su, Xueyi Dong, Jafar S. Jabbari, Peter F. Hickey & & Matthew E. Ritchie

Genome Biology 22, Article number: 339 (2021) | Cite this article
4160 Accesses | 2 Citations | 56 Altmetric | Metrics

Conclusions

In summary, the choice of preprocessing method was found to be less important than other
steps in the scRNA-seq analysis process. Our study comprehensively compares common
scRNA-seq preprocessing workflows and summarizes their characteristics to guide workflow
users.



Dimension reduction (PCA vs UMAP)
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UMAP and TSNE

Ms, Lior Pachter @ @Ipachter - Aug 27, 2021 | personally think TSNE/UMAP is still useful
p It's time to stop making t-SNE & UMAP plots. In a new preprint w/ Tara T h | b | . f d
Chari we show that while they display some correlation with the underlying O have a4 g ODal view O you r data.

high-dimension data, they don't preserve local or global structure & are
misleading. They're also arbitrary. § biorxiv.org/content/10.110...

UMAP Dimension Reduction: Part
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Avoid batch and confounding effects: experimental design

The Problem of Confounding Biological Variation and Batch Effects

Biological Group Processing Batch Observed Differences
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http://bioconductor.org/books/3.14/0SCA.multisample/integrating-datasets.html#motivation



Data integration

e Batch effect or not? Correct or not
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Sacrificing biology by integration

6.4.2 Sacrificing biology by integration

Earlier in this chapter, we defined clusters from corrected values after applying fastMNN() to cells from
all samples in the chimera dataset. Alert readers may realize that this would result in the removal of
biological differences between our conditions. Any systematic difference in expression caused by
injection would be treated as a batch effect and lost when cells from different samples are aligned to the
same coordinate space. Now, one may not consider injection to be an interesting biological effect, but
the same reasoning applies for other conditions, e.g., integration of wild-type and knock-out samples

(Section 5) would result in the loss of any knock-out effect in the corrected values.

This loss is both expected and desirable. As we mentioned in Section 3, the main motivation for
performing batch correction is to enable us to characterize population heterogeneity in a consistent
manner across samples. This remains true in situations with multiple conditions where we would like one
set of clusters and annotations that can be used as common labels for the DE or DA analyses described
above. The alternative would be to cluster each condition separately and to attempt to identify matching
clusters across conditions - not straightforward for poorly separated clusters in contexts like

differentiation.

It may seem distressing to some that a (potentially very interesting) biological difference between
conditions is lost during correction. However, this concern is largely misplaced as the correction is only
ever used for defining common clusters and annotations. The DE analysis itself is performed on pseudo-
bulk samples created from the uncorrected counts, preserving the biological difference and ensuring that
it manifests in the list of DE genes for affected cell types. Of course, if the DE is strong enough, it may
result in a new condition-specific cluster that would be captured by a DA analysis as discussed in
Section 6.4.1.

http://bioconductor.org/books/3.14/0SCA.multisample/differential-abundance.html#sacrificing-differences



Clustering

* Dimension reduction (PCA)
* k-means, hierarchical clustering etc

 Cluster cells (on the reduced
dimensions) using graph-based
method in Seurat v3 (Stuart et al,
Cell 2019). KNN graph + community
detection algorithm

* Can visualize using t-SNE / UMAP
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Evaluating cluster stability

cluster1 cluster1
) -
= aps ...: cluster2 N._ 8 cluster2 e %o
5.4 Evaluating cluster stability ces .°. Random 068 o | «ce o,
N =10 o..o sampling PP ..o ® Mix the cells ® .::.
%o ° .'0. —) ° ..': E—) .o...go
. . L o . . 0 ]
A desirable property of a given clustering is that it is stable to perturbations to the input data (Von 0:0.. PPs ..' .. 22”/; of .‘. ° '.‘ N'_ 16 o :: o o
° oo © - L)
Luxburg 2010). Stable clusters are logistically convenient as small changes to upstream processing will °°®. N =20 Cluster; ..........
. o . oo . cluster3 AN e, Re-clusteri
not change the conclusions; greater stability also increases the likelihood that those conclusions can be N =15 N=12 N e, ereneems
=10 N e, 'S
reproduced in an independent replicate study. scran uses bootstrapping to evaluate the stability of a after 1 2 3 ° '. °
clustering algorithm on a given dataset - that is, cells are sampled with replacement to create a ’ > before, '0.05 0.58 0 Calculate pairwise ™., .. o... cluster2
8 L . . . £ Repeat Jaccard index
“bootstrap replicate” dataset, and clustering is repeated on this replicate to see if the same clusters can ' 4—2 0 012 081 <(— ° 'f.,' ., °
i . . ¥ ®
be reproduced. We demonstrate below for graph-based clustering on the PCs of the PBMC dataset. 100 times Assign highest o° ’ e’ o
0.85 0.04 0 Jaccard index Cluster1 ™, ® o
.. o ¢
cluster cluster3

Tang et al 2021 Bioinformatics

http://bioconductor.org/books/3.14/0OSCA.advanced/clustering-redux.html#cluster-bootstrapping
https://github.com/crazyhottommy/scclusteval



http://bioconductor.org/books/3.14/OSCA.advanced/clustering-redux.html
https://github.com/crazyhottommy/scclusteval

Marker gene p-value is inflated

4 Lucy L. Gao
M @lucylgao

"Double-dipping" - generating a hypothesis based on Step 1: Sample 100 observations
your data, and then testing the hypothesis on that AXA
same data - is dangerous. To see this, let's take data 1
with no signal at all ... 1/ V5.5 11,2 Step 2: Cluster the observations
o Step 1: Sample 100 observations % » A
\
t. ° 2.43 ‘xé Step 3: Compute p-values for a
L e ’ difference in means
° '.’:.:O ° K
.. ...’:. .‘. :
lRIT
. % e .

O
[ All three p-values < 0.000001!! @ J

1:39 PM - Aug 29, 2020 - Twitter Web App

https://www.lucylgao.com/clusterpval/
https://www.youtube.com/watch?v=voseWZlaFm4

https://www.sciencedirect.com/science/article/pii/S2405471219302698



Large number of data points will make p-value tiny

Ming "Tommy" Tang
@tangming2005

Reminder: You will get small p-values when your the Ming "Tommy" Tang @tangming2005 - Sep 28, 2020
number of data points is large @

G Daniel Martinez @dan_martimarti - Feb 4 tiny p-value when you have a lot of data points.

This effect size...

b = = ecm-myCAF
- FDR=2579x 10~ YC r=049
= w
§ <
S 6.0 g 3
? :
2 £ 2
g 5.0 - 8
5 1
: 4.0
— S 0
- o . 0 1 2 3 4
' ° FOXP3
Patients with CRC Controls (n = 494)
(n = 491)

https://twitter.com/tangming2005/status/1489964367336648707
https://mobile.twitter.com/mikhaeldito313/status/1505204061506715649

Question: if you have tens of thousands of data points with a correlation of
0.2 and a p-value 10*-11. Is it meaningful to show that? you always get a

. Mikhael Dito Manurung & @mikhaeldito313 - Mar 19

2/T-test. It can give you Cohen's D, which is the number of standard
deviations that separate the means of two groups. This accounts for the
magnitude of difference in expression, which gives additional information

over Wilcoxon's AUC.

(Image source: tinyurl.com/y8fqlkkx)
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https://twitter.com/tangming2005/status/1489964367336648707
https://mobile.twitter.com/mikhaeldito313/status/1505204061506715649

Cell annotation

Ming "Tommy" Tang
@tangming2005

"The forever daunting question of cell annotation." --- S ngIeR
@NieuwenhuisTim . yeah, you got it right :) #scRNAseq
11:54 AM - Feb 17, 2022 - Twitter Web App Seurat V4 reference based mapping

(Il View Tweet activity

celltype.l2
3 Retweets 30 Likes
—
pDC
Q 0 Q & Lo,
@ Tweet your reply ~ b4 THB
cLI 24 CTL
<< 01
Matthew Bernstein @Matthew_N_B - Feb 17 = Eryth
/ Replying to @tangming2005 and @NieuwenhuisTim g HspC
I have a list of 60 cell type annotation methods. Despite so many methods, - De
e i i - MAIT
e siherd.. - B,memory 5 : .'»EIP"f‘er,?ti”SaCDZlVProIiferating
- -101 Plasmablast e NK_CD56bright Nk Proliferating
: 2 docs.google.com B inte 3 5 -
= Cell Type Classification Methods T B naive e
Sheet1 Name,Link T T T T T T
Garnett, https://doi.org/10.1038/s41592-019-053... -15 -10 -5 0 5 10
WUMAP_1

Q s n 16 ¥ 48 & a

https://twitter.com/tangming2005/status/1494354585602998274 https://bioconductor.org/books/3.14/SingleRBook/



Differential cell abundance analysis

##
## 5 6 7 8 9 10
it Allantois 978158139 W127831 88259
## Blood progenitors 1 6 3 16 6 8 17
D ) ## Blood progenitors 2 31 8 28 21 43 114
® R-responder; B NR-non-responder
100+ ##  Cardiomyocytes 85 21 79 31 174 211
##  Caudal Mesoderm 10 106 9 3 10 29
75 ##  Caudal epiblast 2 2 0 0 22 45
9
9
4 501 6.2 Performing the DA analysis
Q)
2\, Our DA analysis will again be performed with the edgeR package. This allows us to take advantage of
254 the NB GLM methods to model overdispersed count data in the presence of limited replication - except
that the counts are not of reads per gene, but of cells per label (Lun, Richard, and Marioni 2017). The aim
is to share information across labels to improve our estimates of the biological variability in cell
0- abundance between replicates.
All samples 6.7x10° n.s 0.001 n.s n.s n.s library(edgeR)
Ag presentation’|  1x10% n.s 6.6x10° 0.01 0.02 n.s # Attaching some column metadata.

extra.info <- colData(merged) [match(colnames(abundances), merged$sample),]
y.ab <- DGEList(abundances, samples=extra.info)

y.ab

http://bioconductor.org/books/3.14/0SCA.multisample/differential-abundance.html#overview



Multi-sample Differential expression: pseudo-

bulk for the win

ARTICLE W) Check for updates

Confronting false discoveries in single-cell
differential expression

Jordan W. Squair 123 Matthieu Gautier® 2, Claudia Kathe 1'2, Mark A. Anderson1'2, Nicholas D. James1'2,

Thomas H. Hutson® "2, Rémi Hudelle1'2, Taha Qaiser® 3, Kaya J. E. Matson?, Quentin Barraud 1'2,
Ariel J. Levine® 4, Gioele La Manno!, Michael A. Skinnider® 126 & Grégoire Courtine 12,684
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Muscat::pbDS() or Scran::pseudoBulkDEG
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https://www.nature.com/articles/s41467-020-19894-4



Be aware of technical artifacts

Walter Muskovic
@WalterMuskovic

Replying to @tangming2005

MALAT1 and NEATT1 are restricted to the nucleus. We
found scRNA-seq clusters enriched for them can
represent damaged cells in which transcripts are being
lost from the cytoplasm while the nucleus remains
intact

Genoime genomebiology.biomedcentral.com
;-\ »Bi°|°9y DropletQC: improved identification of empty droplets and d...
Background Advances in droplet-based single-cell RNA-

N~
x{
g !
N

Nl sequencing (scRNA-seq) have dramatically increased ...

8:17 AM - Mar 26, 2022 - Twitter for Android

10 Retweets 1 Quote Tweet 49 Likes

O 0 \ a

https://twitter.com/tangming2005/status/1507520784792793090
https://kb.10xgenomics.com/hc/en-us/articles/360004729092-Why-do-I-see-high-levels-of-Malat1-in-my-gene-expression-data-



https://twitter.com/tangming2005/status/1507520784792793090
https://kb.10xgenomics.com/hc/en-us/articles/360004729092-Why-do-I-see-high-levels-of-Malat1-in-my-gene-expression-data-

Differential expression (DE) vs Differential abundance (DA)

14.6.1 DE or DA? Two sides of the same coin

While useful, the distinction between DA and DE analyses is inherently artificial for scRNA-seq data. This
is because the labels used in the former are defined based on the genes to be tested in the latter. To
illustrate, consider a scRNA-seq experiment involving two biological conditions with several shared cell

types. We focus on a cell type X that is present in both conditions but contains some DEGs between

conditions. This leads to two possible outcomes:

1. The DE between conditions causes X to form two separate clusters (say, X; and X5) in expression
space. This manifests as DA where X is enriched in one condition and X is enriched in the other
condition.

2. The DE between conditions is not sufficient to split X into two separate clusters, e.g., because the
data integration procedure identifies them as corresponding cell types and merges them together.
This means that the differences between conditions manifest as DE within the single cluster
corresponding to X.

We have described the example above in terms of clustering, but the same arguments apply for any
labelling strategy based on the expression profiles, e.g., automated cell type assignment (Chapter 12).
Moreover, the choice between outcomes 1 and 2 is made implicitly by the combined effect of the data
merging, clustering and label assignment procedures. For example, differences between conditions are

more likely to manifest as DE for coarser clusters and as DA for finer clusters, but this is difficult to
predict reliably.

httos://www.biorxiv.ore/content/10.1101/2022.03.15.484475v1



Gazillions of point, data can be misleading
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Stacked violin plot and clustered dotplot
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Trajectory/pseduotime

Cells ordered by first principal component
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RNA velocity

Gene structure
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Take a second thought on your velocity results

. Lior Pachter & @Ipachter - Feb 14
@ Replying to @lpachter
As a starting point, it's worth noting that the two popular packages right
now, scVelo (@VolkerBergen et al. from @fabian_theis' lab) and velocyto (

@GioeleLaManno et al. from the @slinnarsson and @KharchenkolLab labs),
yield discordant results on a simple example (see below). 2/

d

Unspliced Counts
" Uorssal

Y

S
Spliced Counts @ @ Radial Giia
. O Neuroblast R
‘ O Immature Neuron > 3 X
. . Neuron
Q 1 n 3 @ 20 Iil

https://twitter.com/lpachter/status/1493368227677671424



CD4 is not expressed at high mRNA level in CD4+ cells

Ming "Tommy" Tang
@tangming2005

1/ a question on CD4 mRNA vs protein. @CaleblLareau
| saw "CD4+ T cells express low levels of the CD4
transcript but very high levels of CD4 protein

(Stoeckius et al., 2017)" in your paper
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Charting the tumor antigen maps drawn by single-cell genomics
The specificity of antibodies makes cancer immunotherapies, including chimeric
antigen receptor T cells and antibody-drug conjugates, possible. In parallel, ...
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CD56 is not expressed at high mRNA level in NK cells

Ergiin Tiryaki @ErgnTiryaki - Mar 10

Replying to @tangming2005

@tomsgoms | think the same situation also applies to NCAM1 (CD56)
mRNA in NK cells. Although Smart-seq2 captures more NCAM1 than 10X, it
is still very low and zero for most of the NK cells.

Fig 6B shows the NCAM1 mRNA and CD56 in NK cluster

"\ -=== " nature.com

Single-cell RNA-seq denoising using a deep count ...
Nature Communications - Single-cell RNA

* sequencing is a powerful method to study gene ...

O 1 0 ¥ s & Oy

Ming "Tommy" Tang @tangming2005 - Mar 10
Yes! Had the same experience with CD56 myself.
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Let's watk sprint through a typical” scRNA-seq analysis
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Other resources

Orchestrating Single-Cell Analysis with

Bioconductor

Authors: Robert Amezquita [aut], Aaron Lun [aut, cre], Stephanie Hicks [aut], Raphael Gottardo [aut]

Version: 1.4.1

Modified: 2022-01-06

Compiled: 2022-01-07

Environment: R version 4.1.2 (2021-11-01), Bioconductor 3.14
License: CC BY 4.0

Copyright: Bioconductor, 2020

Source: https://github.com/LTLA/OSCA

Welcome

This is the landing page for the “Orchestrating Single-Cell Analysis
with Bioconductor” book, which teaches users some common
workflows for the analysis of single-cell RNA-seq data (scRNA-seq). This
book will show you how to make use of cutting-edge Bioconductor tools
to process, analyze, visualize, and explore scRNA-seq data. Additionally,

it serves as an online companion for the paper of the same name.

What you will learn

Bioconductor
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nature methods

Explore content v  About the journal v  Publish with us v Subscribe

nature > nature methods > review articles > article

Review Article | Published: 21 June 2021

The triumphs and limitations of computational
methods for scRNA-seq

Peter V. Kharchenko

Nature Methods 18, 723-732 (2021) | Cite this article
18k Accesses | 4 Citations | 240 Altmetric | Metrics

https://github.com/seandavi/awesome-single-cell

https://github.com/mdozmorov/scRNA-seq notes

https://github.com/crazyhottommy/scRNAseq-analysis-notes

https://liulab-dfci.github.io/bioinfo-combio/scatac.html

https://bioconductor.org/books/release/OSCA/
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