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Abstract
 Analysis of scATAC-seq data has been recently scaled toBackground:

thousands of cells. While processing of other types of single cell data was
boosted by the implementation of alignment-free techniques, pipelines
available to process scATAC-seq data still require large computational
resources. We propose here an approach based on pseudoalignment,
which reduces the execution times and hardware needs at little cost for
precision.

 Public data for 10k PBMC were downloaded from 10x GenomicsMethods:
web site. Reads were aligned to various references derived from DNase I
Hypersensitive Sites (DHS) using  and quantified with  . Wekallisto bustools
compared our results with the ones publicly available derived by 

.cellranger-atac
We found that  does not introduce biases in quantificationResults: kallisto 

of known peaks and cells groups are identified in a consistent way. We also
found that cell identification is robust when analysis is performed using
DHS-derived reference in place of   identification of ATAC peaks.de novo
Lastly, we found that our approach is suitable for reliable quantification of
gene activity based on scATAC-seq signal, thus allows for efficient labelling
of cell groups based on marker genes.

 Analysis of scATAC-seq data by means of  producesConclusions: kallisto 
results in line with standard pipelines while being considerably faster; using
a set of known DHS sites as reference does not affect the ability to
characterize the cell populations
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Introduction
Recent technological advances in single-cell technologies resulted 
in a tremendous increase in the throughput in a relatively short 
span of time1. The increasing number of cells that could be ana-
lyzed prompted a better usage of computational resources; this has  
been especially true for the post-alignment and quantification 
phases. As a consequence, it is today feasible to run the analy-
sis of single cell data on commodity hardware with limited 
resources2, even when the number of observables is in the order 
of hundreds of thousands. Conversely, the analysis steps from raw 
sequences to count matrices lagged for some time; alignment to 
the reference genome or transcriptome is largely dependent on  
classic aligners, without any specific option to handle single-cell 
data, with the notable exception of the latest implementation of  
STARsolo in the STAR aligner3.

More recently, analysis of NGS data benefit from technologies 
based on k-mer processing, allowing alignment-free sequence 
comparison4. Most of these technologies require a catalog of  
k-mers expected to be in the dataset and, hence, subject of  
quantification. RNA-seq analysis relies on the quantification of 
gene/transcript abundances and, while it is possible to perform  
de novo characterization of unknown species in every experi-
ment, it is common practice5,6 to rely on a well-defined gene 
model such as GENCODE7 to quantify expressed species. It 
is then possible to efficiently perform alignment-free analysis 
on transcripts to quantify gene abundances and, in fact, tools  
implementing this approach such as kallisto8 or Salmon9 have  
been quickly adopted on a wide scale. Moreover, a recent  
implementation of kallisto extended its capabilities to the  
analysis of single cell RNA-seq data10 by direct handling of 
cell barcodes and UMIs, allowing the analysis of such data in a  
streamlined way.

Analysis of epigenetic features by ATAC-seq requires the  
identification of enriched peaks along the genome sequence. 
This is typically achieved using peak callers such as MACS11,  
opportunely tuned. Since ATAC-seq signal mirrors DNA  
accessibility as mapped by DNase-seq assays12 and catalogs 
of DNase I Hypersensitive Sites (DHS) are available13,14 it  
should be possible to perform reference-based ATAC-seq  
analysis in a way much similar to what is performed for RNA-seq 
analysis. In this paper we show it is indeed possible to perform  
single-cell ATAC-seq analysis using kallisto and bustools, with 
minor tweaks, using an indexed reference of ~1 million known 
DHS sites on the human genome.

Methods
Single cell ATAC-seq data
Single cell ATAC-seq data were downloaded from the 10x  
Genomics public datasets (https://support.10xgenomics.com/
single-cell-atac/datasets/1.1.0/atac_v1_pbmc_10k) and include 
sequences for 10k PBMC from a healthy donor. We used the  
Peak by cell matrix HDF5 (filtered) object as our ground truth.

Generation of kallisto index
We downloaded the DNase I Hypersensitive Sites (DHS) inter-
val list for hg19 genome from the Regulatory Elements DB15,  
intervals closer than 500bp were clustered using bedtools16.

We extracted DNA sequences for DHS intervals and indexed  
corresponding fasta files using kallisto index (v0.46.0) with 
default parameters, resulting in an index for the full DHS set 
(iDHSfull) and an index for the merged set (iDHS500). The 
same procedure was performed for the peak set identified by  
cellranger-atac and distributed along with the data (iMACS).

Peak quantification
kallisto requires the definition of the unique molecular identifi-
ers (UMI) and cellular barcodes (CB) in a specific fastq file. For 
standard Chromium scRNA-seq data, these are substrings of R1 
and RNA is sequenced in R2. Chromium scATAC-seq reads are not  
structured in the same way, paired end genomic reads are in R1 
and R3, R2 includes only the 16bp cellular barcode. In addition, 
kallisto bus expects only a single read with genomic  
information. Therefore we simulated appropriate structures in three 
different ways:

1.    by adding 12 random nucleotides and mapping the R1 file 
(forward read): 

      kallisto bus -x 10xV2 modified_R1.fastq.gz 
   pbmc_10k_R1.fastq.gz

2.    by extracting sequences of different length n  
(5, 10, 15, 20) from the 5’ of R3 (reverse read) and  
mapping the R1 file: 

      kallisto bus -x 1,0,16:2,0,n:0,0,0 
   pbmc_10k_R1.fastq.gz 
   pbmc_10k_R2.fastq.gz 
   pbmc_10k_R3.fastq.gz

3.    by extracting sequences of different length n (5, 10, 15, 20) 
from the 5’ of R1 and then mapping the R3 file: 

  kallisto bus -x 1,0,16:2,0,n:0,0,0 
  pbmc_10k_R3.fastq.gz 
  pbmc_10k_R2.fastq.gz 
  pbmc_10k_R1.fastq.gz

We will refer to the second set of simulation as n-fwd and to 
the third set as n-rev, where n is the number of nucleotides  
considered as UMI. We also applied two different summari-
zation strategies for bustools count step. In the first  
approach, pseudocounts are not summarized, the number of  
features matches the size of the index; in the second approach,  
summarized, we let bustools map counts on iDHSfull  
to the merged intervals (Figure 1A).

Analsyis of single-cell data
Counts matrices were analysed using Scanpy (v1.4.2)2 with  
standard parameters. We filtered out cells that had less than  
200 regions and regions that were not at least in 10 cells. The  
count matrices were normalized and log transformed. The 
highly variable regions were selected and the subsetted matrices  
processed to finally clusterized the data with the Leiden  
algorithm17. Adjusted mutual information (MI) was used to  
evaluate the concordance between the 10x and our matrices.

The matrices derived from kallisto and cellranger-atac were also 
imported into Seurat V318. Gene activity score was calculated using 
the CreateGeneActivityMatrix function or directly summarized  
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by kallisto. The annotated 10k PMBC scRNA-seq Seurat  
object was downloaded from the link available in their v3.1  
ATAC-seq Integration Vignette (https://satijalab.org/seurat/v3.1/
atacseq_integration_vignette.html).

Cell labels from the scRNA-seq data were transferred using  
TransferData function based on the gene activity score. All the 
analyses were carried out using standard parameters. Jaccard  
similarities were evaluated using the scclusteval (v0.1.1)  
package19.

Results
Limitations of kallisto-based analysis
At time of writing, kallisto does not natively support scATAC-
seq analysis, though it can be applied to any scRNA-seq  
technology which supports CB and UMI. According to the  
kallisto manual, the technology needs to be specified with a  
tuple of indices indicating the read number, the start position 
and the end position of the CB, the UMI and the sequence  
respectively. In this sense, the technology specifier for standard  
10x scRNA-seq with v2 chemistry is 0, 0, 16 : 0, 16, 26 : 1, 0, 0 (see  
kallisto manual for details). Using this logic, a single  
fastq file contains sequence information and UMI is always  
required. scATAC-seq from 10x genomics is typically sequenced 
in paired-end mode and, moreover, there is no definition of  
UMI as reads can be deduplicated after genome alignment.

kallisto requires an index of predefined sequences, typically  
transcripts, to perform pseudoalignment and, if applied to  
scATAC-seq analysis, does not allow for any typical analysis 

in the epigenomic protocols, including the identification and  
quantification of enriched regions. Therefore, we computed 
an index on the genomic sequences for the 80, 234 peaks 
identified by cellranger-atac and distributed together with 
fastq files. This ensures that the subsequent analysis were  
performed on the same regions and allowed us to quantify the  
bias, if any, introduced by kallisto.

kallisto primary analysis
We tested different strategies to overcome the technical limits 
and the absence of UMI. We evaluated concordance of differ-
ent approaches in terms of adjusted mutual information (MI) of 
cell groups identified with a fixed set of filtering and processing  
parameters. Analysis based on cellranger-atac results is considered 
as ground truth. Results are reported in Table 1.

We tested two main strategies: in the first the R1 is pseudoaligned  
and the initial nucleotides of R2, cut at different thresholds, 
are used as UMI (pseudoUMI hereafter). As UMI is needed for  
deduplication, we reasoned that a duplicate in scATAC-seq  
should be identified by the same nucleotides, especially in the 
first portion of the read, where quality is higher. We observe  
generally high values of MI, with the notable exception of  
pseudoUMI 5nt long. Since basecall qualities are generally  
higher for R1 and kallisto does not use qualities in pseudoa-
lignment, we also tested the strategy in which R2 is used for  
pseudoalignment and R1 is used to obtain pseudoUMI. Also in 
this scenario, 5nt pseudoUMI raised the worst results, while MI  
values were slightly higher than the forward configuration. In 
particular, we noticed the highest MI values when R2 is used 

Figure 1. (A) Graphical depiction of processing of pseudoalignment over DHS, based on three DHS derived indices. The first (DHS) generated 
by kallisto on ~2M DNase I sites, the second (DHS500) by merging regions closer than 500bp and the last (DHS500p) by projecting the result 
of DHS index to DHS500 using bustools capabilities. (B) Heatmaps representing MI scores for the DHS derived matrices. The heatmap on the 
left reports the pairwise MI values between DHS, DHS500 and DHS500p strategies. The heatmap on the right represents MI values comparing 
the DHS derived strategies to the cellranger-atac (10x) results or 10-rev strategy. DHS500 strategy achieves the highest scores. (C) MI values 
comparing DHS (green line) and DHS500 (red line) strategies to cellranger-atac at different thresholds on the number of regions considered 
in the analysis. When approximately 50, 000 regions are included, the MI stabilizes at its maximum.
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and pseudoUMI is 10nt long (MI = 0.7625). We also tested a 
configuration using R1 as sequence and 10nt UMI randomly  
generated. Interestingly, concordance remains in line with  
previous experiments (MI = 0.7272).

These data indicate that kallisto is able to properly quantify  
enrichments in scATAC-seq and does not introduce a considerable 
bias.

Analysis of DHS as reference
As one major limitation of a kallisto-based approach to scATAC-
seq is the lack of peak calling routines and the need of a index 
of sequences for pseudoalignments, we reasoned that we could 
use any collection of regions that putatively would be target of  
ATAC-seq experiments. Since ATAC-seq is largely overlap-
ping DHS we exploited the regions defined in the ENCODE 
project20. The DHS data provided by ENCODE includes  
2, 888, 417 sites. We generated an additional dataset by merging  
regions closer than 500bp into 1, 040, 226 sites. We performed 
pseudoalignment on the full dataset, on the merged dataset and, 
lastly, on the full dataset summarized to the merged by bustools 
(see Methods). Pairwise comparison between performances 
of the three methods reveals lower values of MI (Figure 1B).  
Comparison with 10x data and the configuration 10-rev  
previously performed shows high values of MI when consider-
ing merged DHS intervals (MI = 0.7164 and 0.743 respectively).  
When pseudoalignmets are performed on the full DHS set, 
performance degrades to less than optimal levels. Since the 
number of DHS intervals is considerably higher than the  
typical number of regions identifiable by ATAC-seq, we 
tested the trend of MI at different cutoffs on the number 
of DHS included in the analysis (Figure 1C). MI reaches  
a plateau when approximately 50, 000 regions are included into the  
analysis. This sets a reasonable target for region filtering during 
preprocessing stages of scATAC-seq data. In all, these findings 
support the suitability of using kallisto for identification of cell  
identities in scATAC-seq without any prior knowledge of the  
epigenetic status of single cells.

Identification of marker regions
A crucial step in the analysis of scATAC-seq data is the iden-
tification of marker peaks which can be used to functionally  
characterize different clusters. We tested the ability of our  
reference-based approach to identify differential DNase I  
hypersensitive sites that are overlapping or close to peaks  
identified with standard analysis. To this end, we first 
matched cell groups from DHS500 to groups identified after  
cellranger-atac. We selected the top 1, 000 peaks marking each 
DHS500 group and evaluated the concordance by mutual dis-
tance to the top 1, 000 significant markers in the matched groups  
(p < 0.05), we could identify significant markers only in 
five matched clusters. We found that the large majority of  
peaks (>= 80%) were overlapping between the two strate-
gies or closer than 20kb (Figure 2). These results confirm the 
substantial equivalence between the standard strategy and the  
reference-based one.

Integration with scRNA-Seq data and cluster labeling
In addition to the analysis of technical suitability of kallisto 
for the analysis of scATAC-seq data, we investigated its validity 
in extracting biological insight. To this end, we performed a 
more detailed analysis of PBMC data by label transferring  
using Seurat V318, with the hypothesis that different approaches 
could lead to mislabeling of cells clusters. Matching is per-
formed with the help of Gene Activity Scores calculated as 
sum of scATAC-seq counts over gene bodies extended 2kb  
upstream the TSS, Seurat’s default approach. We applied the 
same transferring protocol on data derived from cellranger-atac 
counts and from the DHS500 approach (Figure 3), founding 
no relevant differences in the UMAP embeddings. A detailed 
quantification of cluster matches reveals a slight deviance in 
the characterization of NK subpopulations (Figure 4A). In  
addition to scores calculated by Seurat, we tested the ability of 
bustools summarization step to project and sum scATAC-seq  
values into Gene Activity using the identical mapping to  
extended gene bodies. In terms of cell labeling, this approach is 
equivalent to Seurat (Figure 4B), with the additional advantage of 
reduced run times.

Discussion/conclusions
Analysis of differential chromatin properties, through ATAC-seq 
and other quantitative approaches, relies on the identification 
of peaks or enriched regions, this is often achieved with the 
same statistical framework used in analysis of differential gene  
expression21,22. Identification of peaks is a key difference  
between the two approaches, de novo discovery of unanno-
tated transcripts has been shown to be possible in early times of  
NGS23, but the large majority of analysis is performed on gene  
models; conversely, analysis of epigenomes involves identifica-
tion of regions of interest, although a large catalogues of such 
regions have been provided by several projects, such as the  
ENCODE project24, the BluePrint project25 or the GeneHancer  
database26. In single cell analysis, both scRNA-seq and  
scATAC-seq, identification of novel features may be an issue, 
especially because of the low coverage at which single cells are  
profiled. This work is the first, to our knowledge, to test the  
feasibility of a reference-based approach to ATAC-seq analysis, 

Table 1. Comparision of cellranger-atac and 
kallisto analysis. The table reports adjusted 
Mutual Information between single cell cluster 
assignments on cellranger-atac data and 
kallisto analysis. Different strategies to evaluate 
pseudoUMI are reported. All simulations raised 
high MI values, both in the forward and reverse 
approach, except for the pseudoUMI of length 
5. The 10-Reverse configuration reached the 
highest score.

Comparison Forward Reverse

10x vs 5nt 0.1854 0.1733

10x vs 10nt 0.7434 0.7625

10x vs 15nt 0.7571 0.7398

10x vs 20nt 0.7356 0.7520

10x vs Random 0.7272 None 
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Figure 2. Analysis of peak concordance. The bars represent the 
proportion of marker peaks that are in common between DHS500 and 
cellranger-atac-based strategies at different distance thresholds. 
Only the top 1, 000 significant peaks (p < 0.05) were included in 
the analysis; the graph reports results for the 5 cell clusters (A–E) 
that contain the required amount of significant markers. The chart  
also reports the proportion of peaks without any match (None).

Figure 3. Results of label transfer from reference populations. The UMAP plot on the left represents scRNA-seq data of 10k PBMC as 
returned by Seurat vignette. The UMAP plots in the middle and on the right represent scATAC-seq analysis on cellranger-atac or kallisto 
analysis respectively. Cell clusters are consistent in their topology in the three plots, indicating the validity of kallisto for this kind of analysis.

with a special focus on single cell ATAC-seq. In combination, 
we tested the suitability of kallisto to this kind of analysis, 
to maximise the performances of the whole process. Our results 
suggest that identification of cell groups using a reference-
based approach is not different from a standard pipeline. Not 
only cells could be classified in a nearly identical way, but also 
differential features are largely matched between the analysis. 
The most obvious advantage is the gain in speed and efficiency: 
once reads have been demultiplexed, kallisto analysis requires 
short execution times, in the order of minutes, with limited  
hardware resources; this advantage has been known for a while 
and, in fact, it is has been demonstrated that it can be used on  
Rock64 hardware27. We also anticipate that adoption of a  
reference-based strategy comes with additional advantages, 
in particular functional annotations and gene associations are  
available for known regulatory regions20 and, more recently, 
for DNase I Hypersensitive Sites14. Of course, our strategy 
has some limitations that come from the unavailability of read  
positioning on the genome: in addition to the impossibility 
of identifying novel peaks, it is not possible to perform some  
ATAC-specific analysis, such as nucleosome positioning or  
footprinting of transcription factors in accessible regions.  
Indeed, these two can be overcome if standard alignment is used 
in place of pseudoalignment, at cost of time. As concluding  
remark we would like to underline that, although we showed 
that kallisto can be effectively used for analysis of scATAC-seq 
data, we are aware that it has not been conceived for that  
purposes and, indeed, its interface needs some tweaks to 
make it work; for this reason we advocate the development of 
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tools which support scATAC-seq natively and other tools for  
postprocessing and data visualization.

Data availability
Source data
Single cell ATAC-seq data were downloaded from the 10x  
Genomics public datasets (https://support.10xgenomics.com/ 
single-cell-atac/datasets/1.1.0/atac_v1_pbmc_10k) and include 
sequences for 10k PBMCs from a healthy donor. Access to the  
data is free but requires registration.

Extended data
Zenodo: vgiansanti/Kallisto-scATAC v1.0. https://doi.org/10.5281/
zenodo.370317428.

This project contains a detailed explanation of the  
procedures described in this work and the list of DHS sites; 
this is also available at https://github.com/vgiansanti/Kallisto- 
scATAC.

Extended data are available under the terms of the Creative  
Commons Attribution 4.0 International license (CC- BY 4.0).
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Figure 4. Analysis of Gene Activity Scores. (A) Pairwise Jaccard similarity between cell annotations as a result of label transfer from 
RNA-seq data using Gene Activity Score evaluated by Seurat. Concordance between results after cellranger-atac (rows) and DHS500 
(columns) are largely comparable, with the notable exception of NK subpopulations. (B) Pairwise Jaccard similarity between cell annotations 
on DHS500 when Gene Activity Score is computed by Seurat (rows) or by bustools summarization step (columns).
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